Catenazzi Lab
  • Home
  • Research
    • New species
  • Education
  • Members
  • Publications
  • News
  • Contact

News

Predicaments of tadpoles in dam-altered cold waters

4/19/2018

0 Comments

 
Picture
After our contributions on tadpole thermal performance, we continued investigating the effects of dam-altered thermal regimes on river-breeding amphibians by looking at the consequences of hypolimnetic releases (cold water being released from the bottom of artificial reservoirs) for digestion, assimilation and vulnerability to predators of tadpoles. Our study Consequences of dam‐altered thermal regimes for a riverine herbivore's digestive efficiency, growth and vulnerability to predation, was a collaboration with Dr. Sarah Kupferberger and was published this week in Freshwater Biology. 

We again worked on the foothill yellow-legged frog, Rana boylii in California. At present, R. boylii occupies less than half its historic range, due to the existence of large dams in many river systems. ​During the springs and summers of 2008, 2009 and 2010 we monitored temperature conditions at many breeding sites of R. boylii in regulated (i.e., downstream of dams) and unregulated rivers in northern California (see sensor placed by a rock that was subsequently used as egg attachment site in the image above) to understand changes in thermal regime caused by hypolimnetic releases. We then mimicked the colder conditions existing downstream of dams in experimental settings and investigated how tadpole's digestive efficiency responded to lower temperatures. Finally, we exposed tadpoles of different sizes and developmental stages to natural odonate and hemipteran predators (see a Ranatra eating a tadpole in one of our experimental enclosures in the image below).
Picture
Tadpoles reared in cold water had the lowest digestive efficiency of epilithic periphyton, albeit efficiency was ameliorated when tadpoles had access to highly nutritious dinitrogen‐fixing diatoms. However, these nutritious diatoms, which can be common in natural, unregulated rivers are often replaced by unpalatable, poorly nutritious periphyton downstream of rivers. In our experiments, growth rate of tadpoles correlated with assimilation efficiency, which is crucial for R. boylii because tadpoles need to metamorphose and get out of the water by the end of summer and before the fall rains cause deadly river floods. Low growth rate also affected tadpole survival, with small tadpoles much more likely to succumb to predation. Non‐lethal effects of predators on tadpole growth and tail injury, however, depended on both rearing temperature and exposure temperature. Contrary to the expectation that the cost of predator avoidance behaviours may be greater at warmer exposure temperatures because basal metabolic rates are higher, our results indicated that the energetic cost of foraging less was amplified at cool temperatures. Therefore, tadpoles growing in cold water face multiple, synergistic hurdles from lower  assimilation efficiency and growth to increased predation by invertebrates, thus contributing to population recruitment bottlenecks. 
Picture
0 Comments

LAB PHOTO WINS FIRST PLACE OF FIU TROPICS CONTEST

4/18/2018

0 Comments

 
The lab photo below won first place of the FIU Tropics Photo Contest! ​Young vicuña (Vicugna vicugna) taking a bath in a high-Andean creek at 13,000 feet. Vicuñas are the smallest of the four species of South American camelids, but they are highly prized because of the very fine fiber that can be produced with their wool. As a consequence of the high economic value of this fiber, vicuñas were driven to near extinction in the 1960s, until biologists promoted the sustainable management of wild populations in the high-Andes of southern Peru. One of the first and most successful project was conducted at Pampas Galeras in Ayacucho (shown in the photograph), today a national reserve honoring the memory of environmental journalist Barbara D'Achille.

Picture
0 Comments

    Archives

    March 2023
    February 2023
    January 2023
    December 2022
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014

    CATENAZZI LAB

    News from the lab

    Categories

    All

    RSS Feed

Catenazzi Lab

11200 SW 8th Street, Department of Biological Sciences
Florida International University
Miami, FL 33199

Contact Us